

Solid Edge Syllabus

Module 1: Introduction to Solid Edge

• Overview of CAD and Solid Edge

- Introduction to the importance of CAD in product development.
- Understanding the key capabilities and applications of Solid Edge.
- User Interface and Navigation: Ribbon, Command Bar, and PathFinder.
- Customizing the workspace for efficiency.
- File Management and Templates
 - Understanding Solid Edge file structure: Part (.par), Assembly (.asm), and Draft (.dft).
 - Setting up and managing templates for new projects.
 - Understanding and using file types, including design and template files.

Module 2: Part Modeling

- Basic Part Modeling
 - Introduction to 3D modeling concepts: Creating 3D geometry from sketches.
 - Sketching in Solid Edge: Basic tools (Line, Circle, Rectangle, etc.), applying constraints (dimensioning, relations).
 - Creating 3D features: Extrude, Revolve, Sweep, and Loft.
- Advanced Part Modeling
 - Modifying parts: Fillets, Chamfers, Shells, and Drafts.

- Advanced features: Patterning, Mirroring, and using the Hole Wizard.
- Working with reference geometry: Planes, Axes, and Points.
- Feature operations: Editing, Suppressing, and Rolling back features.
- Sheet Metal Part Modeling
 - Introduction to sheet metal design principles.
 - Creating sheet metal parts using the Base Flange, Edge Flange, and Bend features.
 - Using the "Unfold" tool to create flat patterns for manufacturing.

Module 3: Assembly Design

- Creating Assemblies
 - Introduction to the assembly environment.
 - Inserting parts and positioning them within an assembly.
 - Mating components: Using Mate, Align, and Insert constraints.
 - Using assembly patterns and subassemblies for better management.
- Assembly Operations
 - Assembly cut and feature tools.
 - Working with assembly features like holes and cuts applied to multiple components.
 - Managing assemblies with complex relationships.
 - Creating exploded views for visualization.
- Assembly Motion and Interference Checking
 - Simulating motion and checking component interactions.

- Performing interference checks to ensure design integrity.
- Analyzing assembly performance using kinematic simulations.

Module 4: Drafting and 2D Drawing Creation

- Creating 2D Drawings from 3D Models
 - Introduction to the drafting environment and creating new drawing files.
 - Placing views: Standard views (front, top, side), isometric views, section views, and detail views.
 - Creating auxiliary and exploded views for assemblies.
- Dimensioning and Annotations
 - Adding dimensions: Linear, angular, radial, and ordinate.
 - Geometric tolerancing and symbols: Creating annotations and using callouts.
 - Creating and managing Bill of Materials (BOM) in assemblies.
- Advanced Drawing Tools
 - Creating title blocks and custom drawing templates.
 - Detailing complex views for manufacturing (e.g., hole charts, machining annotations).
 - Managing drawing layers and sheet sizes.

Module 5: Sheet Metal Design

- Sheet Metal Design Basics
 - Introduction to Solid Edge's sheet metal environment.

- Working with sheet metal features like Base Flange, Edge Flange, and Bends.
- Creating and unfolding sheet metal parts.
- Advanced Sheet Metal Features
 - Working with custom bends, corner reliefs, and advanced cutting features.
 - Using pattern tools to replicate features across the sheet metal part.
 - Generating flat patterns for fabrication.
- Drawing Sheet Metal Parts
 - Creating flat patterns in drawings.
 - Adding bend tables and managing bend allowances.

Module 6: Surface Modeling

- Introduction to Surface Modeling
 - Understanding surface modeling and its applications.
 - Basic surface creation: Extrude, Revolve, Sweep, and Loft.
 - Working with surface-based features for complex geometry.
- Advanced Surface Modeling
 - Creating complex shapes with advanced surface tools: Boundary Surface, Sweep Surface.
 - Combining surfaces and solids: Using the "Thicken" tool to create solid bodies.
 - Surface analysis tools to check continuity and smoothness.
- Surface and Solid Integration
 - Converting surfaces into solid bodies for manufacturing purposes.
 - Editing and repairing surfaces using the "Repair" and "Thicken" tools.

Module 7: Parametric and Design Intent

• Understanding Parametric Design

- Introduction to parametric modeling in Solid Edge.
- Using variables, dimensions, and relationships to define models.
- Creating and modifying parameters that drive designs.

• Working with Family of Parts

- Creating family of parts using parameters and configurations.
- Managing part variations using a family table.
- Design intent: Understanding how changes in parameters affect models.
- Using Equations
 - Creating equations to drive complex relationships between dimensions.
 - Using the Equation Editor for advanced design logic.

Module 8: Solid Edge Simulation and Analysis

- Introduction to Solid Edge Simulation
 - Overview of Solid Edge Simulation tools.
 - Running basic static analysis on parts and assemblies.
 - Applying loads, boundary conditions, and material properties.
- Performing Structural Analysis
 - Running linear static analysis to evaluate stress, displacement, and safety factors.
 - Interpreting simulation results and making design improvements.
- Advanced Simulation

- Running modal and thermal analysis.
- Using motion analysis tools for simulating the behavior of assemblies.
- Simulation for Manufacturing
 - Using simulation results to optimize designs for manufacturing.
 - Analyzing part performance under real-world conditions.

Module 9: Generative Design and Additive Manufacturing

- Generative Design Basics
 - Introduction to generative design principles.
 - Using Solid Edge's generative design tools for lightweight structures.
 - Setting design criteria and optimizing geometry for performance.
- Additive Manufacturing (3D Printing)
 - Introduction to additive manufacturing and 3D printing tools in Solid Edge.
 - Preparing models for 3D printing and converting them into printable formats (STL).
 - Generating support structures and optimizing parts for 3D printing.

Module 10: Product Data Management (PDM)

- Introduction to PDM
 - Overview of Product Data Management (PDM) concepts and benefits.

- Managing CAD files with Solid Edge PDM and using a PDM system for version control.
- PDM Workflow Management
 - Creating and managing workflows for design approval and change management.
 - Collaboration and document sharing between teams.
- Managing Product Lifecycle
 - Tracking revisions, changes, and product versions.
 - Integration with ERP and PLM systems for data consistency.

- Master Solid Edge for 3D part modeling, assembly design, and technical drawing creation.
- Utilize sheet metal and surface modeling tools for complex designs.
- Perform basic and advanced simulations to test and optimize product designs.
- Create and manage parametric models and configurations to automate design changes.
- Apply Product Data Management (PDM) techniques for effective collaboration.
- Utilize Solid Edge's generative design and additive manufacturing tools.

Module 11: Final Project

- Hands-On Final Project
 - Create a complete design from part creation to assembly and technical drawing.
 - Apply advanced features such as sheet metal, surface modeling, and simulation.
 - Develop a final project that demonstrates your proficiency in Solid Edge.
- Project Review and Presentation
 - Present the final design, technical drawings, and simulations to demonstrate the design process.
 - Receive feedback from instructors and peers for continuous improvement.

Learning Outcomes:

By the end of this course, students will be able to:

Tools and Technologies Covered:

- **Solid Edge**: Core software for part modeling, assembly design, sheet metal, and surface modeling.
- **Solid Edge Simulation**: For structural, thermal, and motion analysis.
- Solid Edge PDM: Product Data Management system for managing CAD data.
- Additive Manufacturing Tools: For preparing models for 3D printing.